

C122 SERIES

SILICON CONTROLLED RECTIFIERS

FEATURES

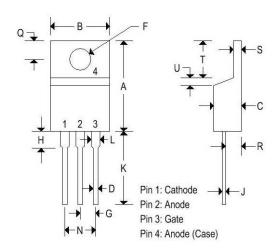
- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Characteristics	C122F	C122A	C122B	C122C	C122D	C122E	C122M	Units
$V_{RROM}^{\Delta}V_{DROM}^{\Delta}$	50	100	200	300	400	500	600	V
$I_{T(RMS)}$ ($T_C = 75^{\circ}C$, $\theta = 180^{\circ}$)			,	8				Α
I _{TSM} for one full cycle of applied principal								
voltage 400 Hz 60 Hz 50 Hz				200 100 85				А
di/dt $V_D = V_{DROM}$, $I_{GT} = 80mA$, $t_r = 0.5 \mu s$	100				A/μs			
I^2 t $T_1 = -65 \text{ to } +100^{\circ}\text{C}, \text{ t} = 1 \text{ to } 8.3 \text{ ms}$	ms 40			A ² s				
P _{GM} * (for 10μs max)				16				W
P _{G(AV)} * (averaging time = 10 ms max)				0.5				W
T _{stg}	-65 to +150				°C			
T _c	-65 to +100				°C			
T _T During soldering for 10 s maximum	250			°C				

 $[\]triangle$ These values do not apply if there is a positive gate signal. Gate must be open or negatively biased.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)


Characteristics		Unite			
Characteristics	Min	Тур	Max	Units	
I_{DOM} or I_{ROM} $V_D = V_{DROM}$ or $V_R = V_{RROM}$, $T_C = 100$ °C	-	0.1	0.5	mA	
V _T I _T = 16A, T _C = 25°C	-	1.45	1.83	V	
I_{GT} $V_D = 12V (DC), R_L = 30\Omega, T_C = 25^{\circ}C$	-	10	15	mA	
V_{GT} $V_{D} = 12V (DC), R_{L} = 30\Omega, T_{C} = 25^{\circ}C$	-	1.0	1.5	V	
I _{HO} T _C = 25°C	-	20	30	mA	
dv/dt $V_D = V_{DROM}$ exponential voltage rise, $T_C = 100^{\circ}C$	10	100	-	V/µs	
t_{gt} $V_D = V_{DROM}$, $I_T = 4.5A$, $I_T = 2A$, $I_{GT} = 80mA$, 0.1 μs rise time, $T_C = 25^{\circ}C$	-	1.6	2.5	μs	
t_q $V_D = V_{DROM}$, $I_T = 2A$, $t_p = 50\mu s$, $dv/dt = 200V/\mu s$, $di/dt = -10A/\mu s$, $I_{GT} = 200mA @ t_{ON}$, $T_C = 75^{\circ}C$	-	10	35	μς	
R _{BJC}	-	-	1.8	°C/W	
R _{BJA}	-	-	75	C/VV	

^{*} Any values of peak gate current or peak gate voltage which result in equal or lower power are permissible.

MECHANICAL CHARACTERISTICS

Case:	TO-220AB
Marking:	Body painted, alpha-numeric
Polarity:	Cathode band

C122 SERIES

SILICON CONTROLLED RECTIFIERS

	TO-220 A B					
	Inc	nes	Millimeters			
	Min	Max	Min	Max		
Α	0.575	0.620	14.600	15.750		
В	0.380	0.405	9.650	10.290		
С	0.160	0.190	4.060	4.820		
D	0.025	0.035	0.640	0.890		
F	0.142	0.147	3.610	3.730		
G	0.095	0.105	2.410	2.670		
Н	0.110	0.155	2.790	3.930		
J	0.014	0.022	0.360	0.560		
K	0.500	0.562	12.700	14.270		
L	0.045	0.055	1.140	1.390		
N	0.190	0.210	4.830	5.330		
Q	0.100	0.120	2.540	3.040		
R	0.080	0.110	2.040	2.790		
S	0.045	0.055	1.140	1.390		
Т	0.235	0.255	5.970	6.480		
U		0.050	-	1.270		
٧	0.045	120	1.140	1020		
Z	-	0.080	-	2.030		

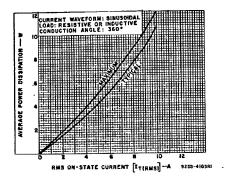


Fig. 1 — Power dissipation vs. on-state current.

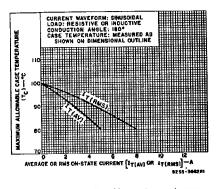


Fig. 2 — Maximum allowable case temperature vs. on-state current.

C122 SERIES

SILICON CONTROLLED RECTIFIERS

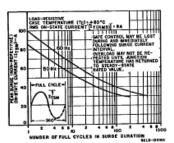


Fig. 3 — Allowable peak surge on-state current vs. surge duration.

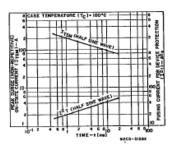


Fig. 4 — Peak surge on-state current and fusing current as a function of time.

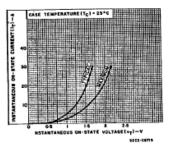


Fig. 5 — Instantaneous on-state current va

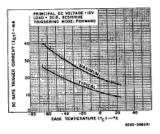


Fig. 6 — DC gate-trigger current vs. case temperature.

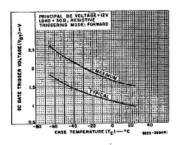


Fig. 7 — DC gate-trigger voltage vs. case temperature.

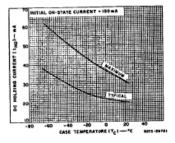


Fig. 8 — Holding current vs. case temperature

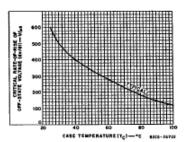


Fig. 9 — Critical rate of rise of off-state voltage vs. case temperature.

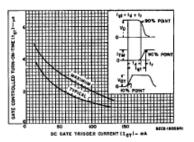


Fig. 10 — Gate-controlled turn-on time vs. gate trigger current.

C122 SERIES

SILICON CONTROLLED RECTIFIERS

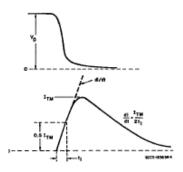


Fig. 11 — Rate of change of on-state current with time (defining di/dt).

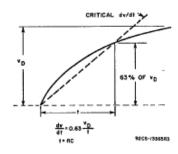


Fig. 12 — Rate of rise of off-state voltage with time (defining critical dv/dt).

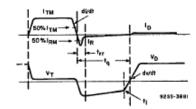


Fig. 13 — Relationship between instantaneous onstate current and voltage, showing reference points for measurement of circuit-commutated turn-off time (t_q).